
Benchmark and Problem Bank
for OptimalControl.jl Package

Yassine Hajem

Abstract—This paper aims to benchmark OptimalControl.jl, a Julia-
based package for solving optimal control problems, by comparing it
to the established JuMP package. To achieve this, a problem bank,
OptimalControlProblems.jl, was developed, enabling fair comparisons
between the two solvers across identical setups and evaluating key metrics
such as solution accuracy and computational speed. The results indicate
that OptimalControl.jl performs well in handling complex optimal
control problems, though there are areas where it could be improved.
This benchmark highlights OptimalControl.jl’s potential in applications
requiring optimal control and offers a foundation for guiding further
development and enhancements.

Keywords—Optimal Control, Benchmarking, Julia Programming, Con-
trol Toolbox, Computational Efficiency, Solver Comparison

I. INTRODUCTION

Optimal control solvers are central to many engineering, eco-
nomics, and system optimization tasks, where the goal is to determine
a control strategy that minimizes or maximizes a given performance
criterion (cost function ) while satisfying dynamic constraints. These
problems require sophisticated computational tools for their solution.

In recent years, Julia [1] has emerged as a high-performance
programming language particularly well-suited for complex and
scientific computing due to its speed and ease of use. Among the
packages available in Julia, ControlToolbox [2] is a versatile library
designed to modelize various optimal control problems. it provides a
range of tools and algorithms for formulating, analyzing, and solving
control problems.

The goal of the project was twofold: First, to create a diverse
repository of test cases (problem bank ) that can be used for future
evaluations and enhancements of the package in Sec. II. Second,
to rigorously assess the efficiency, accuracy, and robustness of the
package when solving different types of optimal control problems in
Sec. III. The benchmarks aim to provide insights into the package’s
strengths and limitations.

II. THE PROBLEM BANK : OPTIMALCONTROLPROBLEMS

To establish a robust framework for evaluating Julia-based ap-
proaches to solving optimal control problems, this study compares the
well-established JuMP [3] package with the newer OptimalControl.jl
solver from ControlToolbox. To facilitate this, a dedicated problem
bank, called OptimalControlProblems.jl, has been developed, contain-
ing various real-world problems. This package allows for a direct,
fair comparison of each framework’s performance across identical
problem.

Each problem within the OptimalControlProblems.jl package has
been formulated to address realistic challenges. The problems are
implemented in both JuMP and OptimalControl.jl syntax to facilitate
side-by-side comparisons of solver’s speed and accuracy. Addition-
ally, each problem includes metadata attributes—such as problem
name, default number of discretization points, and optimization
objective (minimization or maximization) —to simplify problem
selection, management, and filtering based on specific parameters.

However, it is important to note that while all problems in the
problem bank have been written in both formats, some problems

are not yet fully solvable within OptimalControl.jl. As the package
evolves and incorporates new features and capabilities, it is expected
that the complete problem set will eventually become solvable within
OptimalControl.jl. This progressive enhancement will allow for an
even more accurate comparison between the two packages. Table I
below summarizes the current status of each problem’s solvability
with JuMP and OptimalControl.jl, highlighting areas where future
updates to OptimalControl.jl could broaden the scope of the compar-
ison.

Problem With JuMP With OptimalControl
beam ✓ ✓
bioreactor ✓ ✓
cart pendulum ✓ ✓
chain ✓ ✓
dielectrophoretic particle ✓ ✓
double oscillator ✓ ✓
ducted fan ✓ ✓
electrical vehicle ✓ ✓
glider ✓ ✓
insurance ✓ ✓
jackson ✓ ✓
moonlander ✓ X
quadrotor ✓ X
robbins ✓ ✓
robot ✓ ✓
rocket ✓ ✓
space shuttle ✓ X
steering ✓ ✓
truck trailer X X
vanderpol ✓ ✓

TABLE I
LIST OF PROBLEMS IN OPTIMALCONTROLPROBLEMS AND ITS

FEASIBILITY WITH JUMP AND OPTIMALCONTROL [4]

III. THE BENCHMARK PACKAGE :
OPTIMALCONTROLBENCHMARKS

To evaluate the performance of these solvers, two main metrics
were examined: accuracy and computational speed.

A. Accuracy evaluation

In optimal control applications, accuracy is critical, as even small
deviations from the optimal solution can lead to significant issues. Ac-
curate solutions ensure that objectives are achieved while constraints
are respected, which is particularly important in high-stakes domains
where precise results are paramount. To assess accuracy, this study
compares objective function values and state and control functions
between JuMP and OptimalControl.jl across various problems. For
each problem, a dedicated notebook was created to outline the setup
and execution of both solvers.

First, each problem from OptimalControlProblems.jl was called in
both OptimalControl.jl and JuMP syntax with identical parameters
for discretization points and solver settings. This approach ensures
that the comparison between the two solvers reflects differences
in solution accuracy, rather than variations in problem setup. Each



problem was solved using the same nonlinear solver (Ipopt [5] ) and
linear solver (HSL MA57 [6]). Visualizations were then generated to
compare accuracy aspects, such as the state and co-state trajectories
and the control function for each solver. Additionally, the iterative
steps of each solver were documented to demonstrate convergence
progress, illustrating how effectively each solver minimizes residuals
at each step.

B. Speed evaluation

In time-sensitive applications, especially those involving real-time
control, rapid computation of optimal control solutions is essential.
To assess the practical responsiveness of OptimalControl.jl and JuMP
packages, computational speed was evaluated across each problem
in OptimalControlProblems.jl under varying levels of discretization.
This setup enabled a clear comparison of each solver’s capability to
handle increased complexity.

Problems were identically configured to ensure that differences
in speed were attributable to solver performance, not problem for-
mulation. Julia’s native timing tools were used to measure total
solution time, specifically leveraging the @time and @btime macros
from the BenchmarkTools.jl [7] package. @time provides a quick
estimate of execution time and memory usage, while @btime runs
multiple evaluations. These tools provided a comprehensive view of
the computational demands of each solver, revealing insights into
performance and scalability.

The benchmarking process was automated, allowing users to spec-
ify only discretization ranges, which each solver then executed across
the problems. The speed of solving was automatically recorded, and
the results compiled into a PDF file for easy review and comparison(
an example of the benchmark output is shown below in Figure 1).
This automated setup ensured consistency and accuracy across tests.

In summary, the comparison framework developed here provides
a structured, consistent basis for evaluating OptimalControl.jl against
JuMP across diverse problems and performance metrics.

Benchmark models with JuMP and OptimalControl
max iter = 1000, tol = 1.0e-8, constr viol tol = 1.0e-6, solver = ma57

Model Discretization Total Time JuMP Total Time OC Iterations JuMP Iterations OC Allocations JuMP(1e6) Allocations OC(1e6)
steering 100 0.02 0.05 11 11 4.3 9.4
steering 400 0.08 0.2 17 17 18.0 53.8
steering 500 0.11 0.2 17 17 22.1 67.2
steering 1000 0.28 0.44 18 18 44.4 141.1
rocket 100 0.05 0.1 19 21 9.9 26.5
rocket 400 0.24 5.12 40 79 39.3 410.8
rocket 500 0.53 8.78 59 77 50.3 484.4
rocket 1000 0.36 27.07 24 54 97.2 700.5
chain 100 0.01 0.03 7 7 3.4 5.6
chain 400 0.02 0.08 7 8 13.4 24.7
chain 500 0.05 0.16 8 14 16.9 51.2
chain 1000 0.07 0.17 6 6 34.0 48.3

electrical vehicle 100 0.01 0.06 5 16 2.7 21.0
electrical vehicle 400 0.01 0.69 5 17 10.6 103.4
electrical vehicle 500 0.05 13.78 5 1000 13.3 4001.5
electrical vehicle 1000 0.1 40.28 5 370 27.3 4195.1

Fig. 1. Benchmark Results

IV. CONCLUSION

In conclusion, this project explored the benchmarking of Optimal-
Control.jl, comparing it to JuMP for solving various optimal control
problems. By creating a problem bank and automating performance
evaluation, both solvers were tested for accuracy and speed under
consistent setups. The benchmarks showed where OptimalControl.jl
shines and where it needs work, giving a solid foundation for future
updates.

V. FEEDBACK

During this experience, my performance was positively reviewed,
particularly in terms of my analytical skills, commitment, and collab-
orative abilities. According to my tutor’s evaluation, I demonstrated
a high level of proficiency in benchmarking and in developing an
accessible tools. My ability to model, test, analyse, and document
autonomously was noted as ”advanced”.

In self-reflection, I would assess my strengths similarly, acknowl-
edging good analytical abilities and adaptability in real-world sce-
narios. My project management skills, as reflected in structuring
and documenting complex comparisons, highlight my ability to face
challenging tasks into manageable pieces while maintaining clarity
and focus.

For improvement, I aim to enhance my communication skills,
especially in presenting technical concepts in a way that’s clear and
accessible to diverse audiences. Improving in this area will help
me convey complex insights more effectively, which I believe is
essential for successful collaboration and shared understanding in
team settings.

REFERENCES

[1] “Julia,” https:// julialang.org/ .
[2] “Controltoolbox,” https://control-toolbox.org/ .
[3] “Jump,” https:// jump.dev/ .
[4] “List of problems,” https://control-toolbox.org/

OptimalControlProblems.jl/ stable/ list of problems.html#
List-of-Problems-2.

[5] “Ipopt documentation,” https://coin-or.github.io/ Ipopt/ .
[6] “Libhsl,” https:// licences.stfc.ac.uk/product/ libhsl.
[7] “Benchmarktools,” https:// juliaci.github.io/BenchmarkTools.jl/ .

https://julialang.org/
https://control-toolbox.org/
https://jump.dev/
https://control-toolbox.org/OptimalControlProblems.jl/stable/list_of_problems.html##List-of-Problems-2
https://control-toolbox.org/OptimalControlProblems.jl/stable/list_of_problems.html##List-of-Problems-2
https://control-toolbox.org/OptimalControlProblems.jl/stable/list_of_problems.html##List-of-Problems-2
https://coin-or.github.io/Ipopt/
https://licences.stfc.ac.uk/product/libhsl
https://juliaci.github.io/BenchmarkTools.jl/

	Introduction
	The Problem bank : OptimalControlProblems
	The Benchmark Package : OptimalControlBenchmarks
	Accuracy evaluation
	Speed evaluation

	Conclusion
	Feedback

